
Debugging Invariant Issues in Pseudo Embedded
Program: an Analytical Approach

Partha Pratim Ray1, Dr. Ansuman Banerjee2, Banibrata Bag3
1,3Department of Electronics and Communication Engineering

Haldia Institute of Technology
Haldia, Purba Medinipur-721657

West Bengal, India

2Advanced Computing and Microelectronics Unit
Indian Statistical Institute

Kolkata-700108, West Bengal, India

Abstract—Debugging is an unavoidable and most crucial aspect
of software development life cycle. Especially when it comes the
turn of embedded one. Due to the requirements of low code size
and less resource consumption, the embedded softwares need to
be upgraded all the time involving obvious change of code during
development phase. This leads the huge risk of intrusion of bugs
into the code at production time. In this paper we propose an
approach of debugging embedded program in pseudo format,
incorporating invariant analysis. Our methodology works on top
of Daikon, a popular invariant analyzer. We have experimented
with a simplified code snippet [1], used during debugging a
reported error in BusyBox which is a de-facto standard for Linux
in embedded systems.

Keywords- Debugging, embedded system, embedded linux, busybox,

invariant analysis

I. INTRODUCTION

Today’s technological growth in the areas of Very Large
Scale Integration (VLSI), and system programming brought
down the so called problematic approach to design the
sophisticated program on the hardware base, allowing the
programmers to develop large hard core pieces of program in
minimal time. Embedded programs are mandated to some
special attentions (e.g. low code size, lower memory foot-
print etc.) as compared to usual general purpose programs
(softwares). All these things have made embedded
programs to get designed and developed without sufficient
sanity checking norms (exceptions, signal handlers, assertions
etc.). This results in huge probability in bug intrusion into the
embedded code the production time.

A software bug [2] is an error, flaw, mistake,
undocumented feature that prevents it from behaving as
intended (e.g. producing an incorrect result). Bugs normally
arise due to the mistakes and wanted/unwanted logical errors
produced by human being (programmer). It should be noted
that reproduction of a bug may be very different in various
angles than to the actual one presented in the code. So the
Debug method must be very efficient to trace back the
bug from its physical manifestation. A bug report should be
able to seek out the root cause of the manifested bug.

We employ our method on a code snippet (simplified form)
[1], developed from the reported error (arp utility) [6] in
Busy Box [BusyBox provides many of the standard utilities
but has a smaller code size], the de-facto standard for Linux
in embedded devices. We imply the test input on this code
and feed the output into Daikon to produce a set of invariants.
We take another modified (buggy) version with some
modifications of the same code and do the same. At this point
we compare and analyze the two sets of invariants and detect
the source level root cause of the bug in the buggy version.

This paper is organized as follows: Section II presents related
work. Section III presents an overview of our approach.
Section IV presents facts about Daikon and invariant. Section
V presents the idea of BusyBox behind our approach. Section
VI describes our experimentation done with Daikon.
Section VII presents the analysis. Section VIII concludes this
paper.

II. RELATED WORK

One of the first efforts for debugging program changes is [4].
This paper identifies the changes across program versions and
searches among subsets of this change set to identify which
changes could be responsible for the given observable error. In
evolving program debugging, a buggy program version is
simultaneously analyzed with older stable program version. A
very recent paper [5] has proposed an approach to debug the
various memory related issues in embedded Linux. This
methodology implements the previously reported bugs [6] in
BusyBox, a de-facto standard for Linux in embedded devices.
This methodology experimented with Valgrind [7] and Daikon
[3]. Though, the paper pointed out the root cause of bugs in
source code level, but failed to produce any promising result
using Daikon.

IODINE [15] is such a tool which can automatically extract
likely design properties such as state machine protocols,
request-acknowledge pairs, and mutual exclusion between
signals from design simulations. This literature showed that
the dynamic invariant detection for hardware designs can infer
relevant and accurate properties. In 2009, a paper proposed the

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

780

DARWIN [8] approach for debugging program versions.
DARWIN performs dynamic symbolic execution along the
execution of a given test input in two programs. DARWIN
method is basically suited for debugging branch errors (or
code missing errors where the missing code contains
branches). Dynamic slicing [9] has so far been studied as an
aid for program debugging and understanding. A recent work
[10] uses dynamic program dependencies to seek the involved
parts of an input that are responsible for a given failed output.
Research such as [11,12] combine symbolic execution and
dependency analysis for test suite augmentation.

Another recent literature [1] proposed the possibility of using
the golden implementation as a reference model in software
debugging. This paper experimented involving the BusyBox
embedded Linux utilities while treating the GNU Core
Utilities as the golden or reference implementation. This
debugging method consisted of dynamic slicing with respect
to the observable error in both the implementations (the
golden implementation as well as the buggy software). During
dynamic slicing this methodology also performed a step by
step weakest precondition computation of the observable error
with respect to the statements in the dynamic slice. The
formulae computed as weakest pre-condition in the two
implementations are then compared to accurately locate the
root cause of a given observable error.

Another approach used Daikon [3] in its learning component
to analyze the various invariants present in the code.
HeapGuard and determina Memory Firewall [13] helped in
monitoring phase incorporating the monitor to detect a failure
and the failure location.

III. OVERVIEW OF OUR APPROACH

In this section we present our approach to debug the embedded
program. To proceed further we need to clarify the objective
of this movement.

A. Objective

Embedded programs are developed to perform a predefined
specific task. In this respect it should be pointed that with the
rapid development of embedded programming structure and
huge market requirement, the designers often practice to
compress down (lower in size and smaller in complexity) the
existing (stable) version of program into newer one. This
compels the programmer to change in some parts of the stable
code leading to an obvious condition of bug intrusion into the
resulting code at development phase keeping overall algorithm
fixed, though. Our research objective is to search out the root
cause of the bugs present in the newly generated code (buggy).
Fig. 1 shows the same in pictorial form.

Fig. 1 Test input feeding into stable and buggy program.

The figure above demonstrates the set of tests {T1, T2,...,Tk}
being fed into the stable program P and buggy program P’. All
the test inputs run correctly producing expected result on P,
whereas all but Tj show expected output when run by P’. We
have to find out the reason of the failure of test input Tj in P’.
The fig. 2 illustrates the same.

 Fig. 2 Test input Tj passes in P but fails in P’.

B. Overview

We go through a dedicated methodology that seeks out the
root cause of change induced bugs (bugs that introduced due
to change of code). Our methodology works on top of
Daikon, a popular invariant analyzer. Fig. 3 presents the whole
of our thought to debug the change induced bugs in embedded
program.

In fig. 3 we have shown our detail methodology to debug an
embedded program incorporating invariant analysis. As the
diagram illustrates, the test input is fed to both the binaries
(debug build executables) of stable and buggy program.
Where the given test input passes (successful run) in the
execution of P but fails (failed run) in P’. In the mentioned
successful run and failed run, we want to mean that the test
case produced the expected behavior and unexpected behavior,
respectively. This whole thing may lead to correct output,
segmentation fault, or program crash, anything to the
programmer and the programming measure which truly
depends upon the algorithm of the code under investigation.

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

781

 Fig. 3 Overview of invariant analysis incorporated embedded program
debugging approach.

The next phase of the methodology relies heavily on Daikon.
Where we feed the two binaries in the front-end (insrtumenter)
(kvasir-dtrace for program written in C/ C++) that in turn
produces two different dtrace (declaration and values of the
variables of code) files to be processed in next stage.

The dtrace files are separately fed into the invariant generator
to generate inv files containing all the invariants of the code.
At the last phase of this methodology the inv files are
compared by invariant comparator, which results an output file
containing the differences of the invariants, as a bug report.

Hence after, we proceed with the bug report to analyze the
invariant/s that was/were not present in any of the two
programs or have has/changed its value during change of code.
This lets to point out the root cause of the bug associated with
the code fragment, related to the culprit invariant/s in the code.

IV. FACTS ABOUT DAIKON AND INVARIANT

This section tells about Daikon and the very aesthetic aspect of
our approach --- invariant.

A. Daikon

Daikon is an implementation of dynamic detection of likely
invariants; that is, the Daikon invariant detector reports likely
program invariants. Dynamic invariant detection runs a
program, observes the values that the program computes, and
then reports properties that were true over the observed
executions. Daikon can detect properties in C, C++, Eiffel,
Java, and Perl programs; in spreadsheet files; and in other data
sources. That data can come from any source, but Daikon is
typically used to find invariants over variable values in
running programs. A front end is a tool that converts data from
some other format into Daikon’s input format. The most
common type of front end is an instrumenter, which causes
your program to output a ‘.dtrace’ file that Daikon can
process. Daikon runs on Java Virtual Machine (JVM).

Daikon comes with two front ends for the C language: Kvasir
and Mangel-Wurzel. Kvasir only works under the Linux
operating system, and it works only on “x86” and “x86/64”
processors. Mangel-Wurzel lacks some tracing features related
to arrays and nested structs, and requires Purify. Another front
end is there for Java language --Chicory. It executes Java
programs, creates data trace (‘.dtrace’) files, and optionally
runs Daikon on them. We choose Kvasir in this paper as it is
freely available and comes with distribution of Daikon
package.

Daikon invariant detector --- ‘java daikon.Daikon’ takes
different ‘.dtrace’, ‘.decl’ files to produce ‘.inv’ (invariant)
file. There are various control and debugging options available
with Daikon that can be used for sake of better results in
different angles. Along with these advantages, Daikon has its
own way of testing mechanisms as unit testing and regression
testing.

B. Invariant

An invariant is a property that holds at a certain point or points
in a program (An invariant is simply an expression that
evaluates to “true” on all executions (paths) of the program);
these are often seen in assert statements, documentation, and
formal specifications. Invariants can be useful in program
understanding and a host of other applications. Examples
include “.field > abs(y)”; “y = 2*x+3”; “array a is sorted”; “for
all list objects lst, lst.next.prev = lst”; “for all treenode objects
n, n.left.value < n.right.value”; “p != null => p.content in
myArray”; and many more.

C. Program point
 Invariants can be checked at arbitrary locations in a program.
Two examples are procedure entries and exits, resulting in
invariants that correspond to preconditions and post
conditions. It can be useful to compute invariants at each
procedure exit (return statement) and also to compute an
aggregate exit point (as viewed by a client) by generalizing
over the individual exit points. Object or class invariants are
also computed at an aggregate program point (object point), by
generalizing over all objects that are observed at entry to and
exit from public methods of a class, that are passed into or
returned from methods of other classes, or that are stored in
object fields [14].

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

782

D. Nonsensical

 Some trace variables and derived variables may represent
meaningless expressions; in such a circumstance, the value is
said to be nonsensical. That variable appears in the ‘.dtrace’
file, but its value is marked as nonsensical. Some trace
variables and derived variables may not have a value because
the expression that computes it cannot be evaluated. Even if
implication is not verified between two invariant sets after
examining the preconditions, continue to check the implication
involving postconditions. This is somewhat dangerous, in that
if the implication does not hold between the preconditions, the
invariant sets may be inconsistent, in which case reasoning
about the postconditions is formally nonsensical. Examples
include: x when x is uninitialized or deallocated, x.y when x is
null (uninitialized or deallocated), a[i] when i is outside the
bounds of a (uninitialized or deallocated, or a is null).

V. BUSYBOX CONCEPT BEHIND OUR APPAROACH

[1] implemented golden implementation driven debugging
method on BusyBox —the de-facto standard for Embedded
Linux devices. It provides many of the standard Linux
utilities, but has a smaller code size (size of the executable)
than the GNU Core Utilities, net-tools and procps. This paper
employed debugging methods on BusyBox version 1.4.2 and
1.16.0, to find the root causes of errors that have previously
been reported in literature [6]. We are interested in ‘arp –Ainet
’bug to demonstrate our approach. In standard Linux
distribution arp is found in network utility which manages
processor’s network neighbor cache. It can add or delete the
entries to the cache, or display the cache’s current content.
There is a bug in the BusyBox arp implementation: running
arp with the command-line option -Ainet results in a
segmentation fault. ‘arp –Ainet’ in command line argument
executes well when run in GNU environment, but produces
wrong output when run in BusyBox—1.4.2. At this point of
view we can assume the source program (arp.c) of the above
said bug-- arp in GNU environment to be old stable program P
and the same of the BusyBox environment, to be change
induced buggy implantation P’. As because the file arp.c is
larger in size and complexity, so we have chosen the pseudo
format of arp.c from [1] to implement our methodology in
simpler way. We have termed it P, whereas the code snippet
that we have developed from P (changing a few line of code)
is P’. Both the programs P and P’ act as the stable and buggy
respectively. Fig. 4 and fig. 5 represents P and P’ respectively.

VI. EXPERIMENT ON DAIKON

Consider an execution of the two programs as cuArp A inet
and bbArp A inet, where bbArp and cuArp are respectively
the names of the executables (debug build) resulting out of P
and P’. Evidently, the output of cuArp is as expected inet
DFLT_HW, while the output of bbArp is inet NULL (since
argv[3] is NULL) which is undesirable.

 Fig. 4 Simplified fragment of ARP in Coreutils/Net-tools – stable version.

 Fig. 5 Simplified fragment of ARP in BusyBox– buggy version.

As an objective of investigating the incorrect value of
hardware type, we set out to find the root cause as to why the
variable hw is set to a NULL value at the end of the program
execution [1].

A. Trace file generation

We run kvasir-dtrace ./ cuArp A inet and kvasir-dtrace ./
bbArp A inet in command line and produce cuArp.dtrace and
bbArp.dtrace files respectively. The .dtrace file lists both

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

783

variable declarations and values present in the given file. The
declaration (.decls) parts of both files are shown in fig. 6 and 7
respectively.

 Fig. 6 Declaration part of cuArp.dtrace file.

 Fig. 7 Declaration part of bbArp.dtrace file.

B. Invariant detection

We run java daikon.Daikon daikon-output / cuArp.dtrace and
java daikon.Daikon daikon-output / bbArp.dtrace in command
line, that in turn produce cuArp.inv.gz and bbArp.inv.gz
repectively, containing the list of invariants in compressed
format. Fig. 8 illustrates the invariants of the both files. The
left portion of fig. 8 presents the invariants found in
cuArp.inv.gz whereas other portion presents that of
bbArp.inv.gz.

Fig. 8 Invariants of cuArp.inv.gz (left) and bbArp.inv.gz (right).

C. Invariant comparison

Now we run java daikon.Daikon.diff.Diff cuArp.inv.gz
bbArp.inv.gz in command line to produce the difference
between the invariants of the two files. The difference of
invariants is demonstrated in fig. 9.

 Fig. 9 Invariant difference between cuArp.inv.gz and bbArp.inv.gz.

VII. ANALYSIS

If we look at fig. 9 closely we can find out sharp difference of
invariants between the two codes presented above. The
<..function():::ENTER> and <..function():::EXIT> segments
point out the difference between the invariants (function() is
arbitrarily assumed for the two functions – get_hwtype0 and
main()) found in two .inv files. The inner portion of the
ENTER and EXIT program shows the clear difference
between the two programs. For example if we consider
<name=”DFLT_HW” {1+}, null>, it can be seen that the left
portion of the comma (,) e.g., name=DFLT_HW presents the
value of the invariant—name (in P).Whereas the value of
name is null in P’. All other differences occurred in the
invariant—difference file are basically due to systematic
configuration. It means the value of variable name is
DFLT_HW before entering into get_hwtype() in P but

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

784

different in case of P’. The same happens after exiting
get_hwtype(), returning DFLT_HW. This can be verified by
the declaration part of bbArp.dtrace file (fig. 7), where the
“ENTER” and “EXIT” program points of get_hwtype()
contains nonsensical values. This tells that the change of code
at get_hwtype() in P’ leads to the change of value of variable
name, hence the bug intrusion in P’.

Though, the output or manifestation of the bug in P’ is at line
number 20 (e.g., the output inet NULL) the root cause of the
bug is present in get_hwtype() function, where the value of
actual parameter passing to get_hwtype() is argv[3] contains
NULL (as we put -- ./bbArp A inet in commandline). Hence
it can be said that the bug is present at line number 14 in form
of argv[3]. Fig. 10 illustrates the whole concept.

 Fig. 10 Illustration of source level bug localization incorporating invariant
analysis.

VIII. CONCLUSION

In this paper we propose a methodology for debugging errors
in embedded program. Our methodology works on top of
Daikon, an invariant analyzer. We have experimented with a
published error in BusyBox in pseudo format and found
promising results. Currently, we are investigating to develop
software which will automatically detect the errors present in

embedded program correlating the invariant differences after
generating the invariants produced by Daikon.

REFERENCES

[1] A. Banerjee, Abhik R. Choudhury, Johannes A. Harlie, Zhenkai
Liang, Golden implementation driven software debugging, in
FSE-18, 2010.

[2] Software bug. http://en.wikipedia.org/wiki/Software bug.
[3] Daikon. http://pag.csail.mit.edu/daikon/.
[4] A. Zeller. Yesterday my program worked, today it does not. Why?

In ESEC-FSE, 1999.
[5] P. P. Ray, A. Banerjee, Debugging memory issues in embedded

linux: a case study, In IEEE Tech sym, 2011.
[6] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2009.

[7] Valgrind. http://valgrind.org/.
[8] Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. DARWIN: An

approach for debugging evolving programs. In ESEC-FSE, 2009.
[9] B. Korel and J. W. Laski. Dynamic program slicing. Information

Processing Letters, 29(3):155163, 1988.
[10] J. Clause and A. Orso. Penumbra: Automatically identifying

failurerelevant inputs using dynamic tainting. In ISSTA, 2009.
[11] D. Qi, A. Roychoudhury, and Z. Liang. Test generation to expose

changes in evolving programs. In ASE, 2010.
[12] R. Santelices, P. Chittimalli, T. Apiwattanapong, A. Orso, and M.

Harrold. Test-suite augmentation for evolving software. In ASE,
2008.

[13] Kiriansky,V.,Bruening,D.,and Amarasinghe,S.Secure execution
via program shepherding. In USENIX Security(Aug.2002).

[14] J. H. Perkins, M. D. Ernst, Efficient Incremental Algorithms for
Dynamic Detection of Likely Invariants, In SIGSOFT’04/FSE12.

[15] S. Hangal, S. narayanan, N. Chandra, S. Chakravorty, IODINE: A
Tool to Automatically Infer Dynamic Invariants for Hardware
Designs. In DAC 2005.

AUTHORS PROFILE

Mr. Partha Pratim Ray received B.Tech from the West Bengal University of
Technology, India, in 2008. He is currently a final year student of M.Tech in
the same university. His specialization is the Embedded Systems. The Author
is also the student member of IEEE.

Dr. Ansuman Banerjee is an Assistant Professor at the Advanced Computing
and Microelectronics Unit, Indian Statistical Institute Kolkata, India. He
received his B.E. from Jadavpur University, and M.S. and Ph.D. degrees from
the Indian Institute of Technology Kharagpur -- all in Computer Science. Prior
to joining Indian Statistical Institute, he spent some time at the National
University of Singapore as a research fellow and about three years at Interra
Systems India Pvt. Ltd.

Mr. Banibrata Bag received B.Tech from the Burdwan University, India, in
2004. He mastered in VLSI and Microelctronics from the West Bengal
university of Technology, India, in 2009. This author has more than four years
experience as a software developer in PHP programming He is currently an
Assistant Professor in department of ECE in Haldia Institute of Technology.

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

785

