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Abstract—Debugging is an unavoidable and most crucial aspect 
of software development life cycle. Especially when it comes the 
turn of embedded one. Due to the requirements of low code size 
and less resource consumption, the embedded softwares need to 
be upgraded all the time involving obvious change of code during 
development phase. This leads the huge risk of intrusion of bugs 
into the code at production time. In this paper we propose an 
approach of debugging embedded program in pseudo format, 
incorporating invariant analysis. Our methodology works on top 
of Daikon, a popular invariant analyzer. We have experimented 
with a simplified code snippet [1], used during debugging a 
reported error in BusyBox which is a de-facto standard for Linux 
in embedded systems. 
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invariant analysis       

I.  INTRODUCTION  

 

Today’s technological growth in the areas of Very Large 
Scale Integration (VLSI), and system programming brought 
down the so called problematic approach to design the 
sophisticated program on the hardware base, allowing the 
programmers to develop large hard core pieces of program in 
minimal time. Embedded programs are mandated to some 
special attentions (e.g. low code size, lower memory foot-
print etc.) as compared to usual general purpose programs 
(softwares). All these things have made embedded 
programs to get designed and developed without sufficient 
sanity checking norms (exceptions, signal handlers, assertions 
etc.). This results in huge probability in bug intrusion into the 
embedded code the production time. 

 
A   software   bug   [2]   is   an   error,   flaw,    mistake, 
undocumented feature that prevents it from behaving as 
intended (e.g. producing an incorrect result). Bugs normally 
arise due to the mistakes and wanted/unwanted logical errors 
produced by human being (programmer). It should be noted 
that reproduction of a bug may be very different in various 
angles than to the actual one presented in the code. So the 
Debug method must be very efficient to trace back the 
bug from its physical manifestation. A bug report should be 
able to seek out the root cause of the manifested bug. 

We employ our method on a code snippet (simplified form) 
[1], developed from the reported error (arp utility) [6] in 
Busy Box [BusyBox provides many of the standard utilities 
but has a smaller code size], the de-facto standard for Linux 
in embedded devices. We imply the test input on this code 
and feed the output into Daikon to produce a set of invariants. 
We take another modified (buggy) version with some 
modifications of the same code and do the same. At this point 
we compare and analyze the two sets of invariants and detect 
the source level root cause of the bug in the buggy version. 

 
This paper is organized as follows: Section II presents related 
work. Section III presents an overview of our approach. 
Section IV presents facts about Daikon and invariant.  Section 
V presents the idea of BusyBox behind our approach. Section 
VI describes our experimentation done with Daikon. 
Section VII presents the analysis. Section VIII concludes this 
paper. 

II. RELATED WORK 

 
One of the first efforts for debugging program changes is [4]. 
This paper identifies the changes across program versions and 
searches among subsets of this change set to identify which 
changes could be responsible for the given observable error. In 
evolving program debugging, a buggy program version is 
simultaneously analyzed with older stable program version. A 
very recent paper [5] has proposed an approach to debug the 
various memory related issues in embedded Linux. This 
methodology implements the previously reported bugs [6] in 
BusyBox, a de-facto standard for Linux in embedded devices. 
This methodology experimented with Valgrind [7] and Daikon 
[3]. Though, the paper pointed out the root cause of bugs in 
source code level, but failed to produce any promising result 
using Daikon. 
 
IODINE [15] is such a tool which can automatically extract 
likely design properties such as state machine protocols, 
request-acknowledge pairs, and mutual exclusion between 
signals from design simulations. This literature showed that 
the dynamic invariant detection for hardware designs can infer 
relevant and accurate properties. In 2009, a paper proposed the  
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DARWIN [8] approach for debugging program versions. 
DARWIN performs dynamic symbolic execution along the 
execution of a given test input in two programs. DARWIN 
method is basically suited for debugging branch errors (or 
code missing errors where the missing code contains 
branches). Dynamic slicing [9] has so far been studied as an 
aid for program debugging and understanding. A recent work 
[10] uses dynamic program dependencies to seek the involved 
parts of an input that are responsible for a given failed output. 
Research such as [11,12] combine symbolic execution and 
dependency analysis for test suite augmentation.  
 
Another recent literature [1] proposed the possibility of using 
the golden implementation as a reference model in software 
debugging. This paper experimented involving the BusyBox 
embedded Linux utilities while treating the GNU Core 
Utilities as the golden or reference implementation. This 
debugging method consisted of dynamic slicing with respect 
to the observable error in both the implementations (the 
golden implementation as well as the buggy software). During 
dynamic slicing this methodology also performed a step by 
step weakest precondition computation of the observable error 
with respect to the statements in the dynamic slice. The 
formulae computed as weakest pre-condition in the two 
implementations are then compared to accurately locate the 
root cause of a given observable error.  
 
Another approach used Daikon [3] in its learning component 
to analyze the various invariants present in the code. 
HeapGuard and determina Memory Firewall [13] helped in 
monitoring phase incorporating the monitor to detect a failure 
and the failure location. 

III. OVERVIEW OF OUR APPROACH 

 
In this section we present our approach to debug the embedded 
program. To proceed further we need to clarify the objective 
of this movement.  
 

A. Objective  

Embedded programs are developed to perform a predefined 
specific task. In this respect it should be pointed that with the 
rapid development of embedded programming structure and 
huge market requirement, the designers often practice to 
compress down (lower in size and smaller in complexity) the 
existing (stable) version of program into newer one. This 
compels the programmer to change in some parts of the stable 
code leading to an obvious condition of bug intrusion into the 
resulting code at development phase keeping overall algorithm 
fixed, though. Our research objective is to search out the root 
cause of the bugs present in the newly generated code (buggy). 
Fig. 1 shows the same in pictorial form.    
 

 
Fig. 1 Test input feeding into stable and buggy program. 

 
The figure above demonstrates the set of tests {T1, T2,...,Tk} 
being fed into the stable program P and buggy program P’. All 
the test inputs run correctly producing expected result on P, 
whereas all but Tj show expected output when run by P’. We 
have to find out the reason of the failure of test input Tj in P’. 
The fig. 2 illustrates the same.   

 

 
       Fig. 2 Test input Tj passes in P but fails in P’.  

B. Overview 

We go through a dedicated methodology that seeks out the 
root cause of change induced bugs (bugs that introduced due 
to change of code).  Our methodology works on top of 
Daikon, a popular invariant analyzer. Fig. 3 presents the whole 
of our thought to debug the change induced bugs in embedded 
program.  
 
In fig. 3 we have shown our detail methodology to debug an 
embedded program incorporating invariant analysis. As the 
diagram illustrates, the test input is fed to both the binaries 
(debug build executables) of stable and buggy program. 
Where the given test input passes (successful run) in the 
execution of P but fails (failed run) in P’. In the mentioned 
successful run and failed run, we want to mean that the test 
case produced the expected behavior and unexpected behavior, 
respectively. This whole thing may lead to correct output, 
segmentation fault, or program crash, anything to the 
programmer and the programming measure which truly 
depends upon the algorithm of the code under investigation.  
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   Fig. 3 Overview of invariant analysis incorporated embedded program 
debugging approach. 

 
The next phase of the methodology relies heavily on Daikon. 
Where we feed the two binaries in the front-end (insrtumenter) 
(kvasir-dtrace for program written in C/ C++) that in turn 
produces two different dtrace (declaration and values of the 
variables of code) files to be processed in next stage.  
 
The dtrace files are separately fed into the invariant generator 
to generate inv files containing all the invariants of the code. 
At the last phase of this methodology the inv files are 
compared by invariant comparator, which results an output file 
containing the differences of the invariants, as a bug report. 
 
Hence after, we proceed with the bug report to analyze the 
invariant/s that was/were not present in any of the two 
programs or have has/changed its value during change of code. 
This lets to point out the root cause of the bug associated with 
the code fragment, related to the culprit invariant/s in the code. 

IV. FACTS ABOUT DAIKON AND INVARIANT 

 
This section tells about Daikon and the very aesthetic aspect of 
our approach --- invariant.  
 

A. Daikon 

Daikon is an implementation of dynamic detection of likely 
invariants; that is, the Daikon invariant detector reports likely 
program invariants. Dynamic invariant detection runs a 
program, observes the values that the program computes, and 
then reports properties that were true over the observed 
executions. Daikon can detect properties in C, C++, Eiffel, 
Java, and Perl programs; in spreadsheet files; and in other data 
sources. That data can come from any source, but Daikon is 
typically used to find invariants over variable values in 
running programs. A front end is a tool that converts data from 
some other format into Daikon’s input format. The most 
common type of front end is an instrumenter, which causes 
your program to output a ‘.dtrace’ file that Daikon can 
process. Daikon runs on Java Virtual Machine (JVM). 
 
Daikon comes with two front ends for the C language: Kvasir 
and Mangel-Wurzel. Kvasir only works under the Linux 
operating system, and it works only on “x86” and “x86/64” 
processors. Mangel-Wurzel lacks some tracing features related 
to arrays and nested structs, and requires Purify. Another front 
end is there for Java language --Chicory. It executes Java 
programs, creates data trace (‘.dtrace’) files, and optionally 
runs Daikon on them. We choose Kvasir in  this paper as it is 
freely available and comes with distribution of Daikon 
package.  
 
Daikon invariant detector --- ‘java daikon.Daikon’ takes 
different ‘.dtrace’, ‘.decl’ files to produce ‘.inv’ (invariant) 
file. There are various control and debugging options available 
with Daikon that can be used for sake of better results in 
different angles. Along with these advantages, Daikon has its 
own way of testing mechanisms as unit testing and regression 
testing. 

B. Invariant 

An invariant is a property that holds at a certain point or points 
in a program (An invariant is simply an expression that 
evaluates to “true” on all executions (paths) of the program); 
these are often seen in assert statements, documentation, and 
formal specifications. Invariants can be useful in program 
understanding and a host of other applications. Examples 
include “.field > abs(y)”; “y = 2*x+3”; “array a is sorted”; “for 
all list objects lst, lst.next.prev = lst”; “for all treenode objects 
n, n.left.value < n.right.value”; “p != null => p.content in 
myArray”; and many more. 
 
C.    Program point 
 Invariants can be checked at arbitrary locations in a program. 
Two examples are procedure entries and exits, resulting in 
invariants that correspond to preconditions and post 
conditions. It can be useful to compute invariants at each 
procedure exit (return statement) and also to compute an 
aggregate exit point (as viewed by a client) by generalizing 
over the individual exit points. Object or class invariants are 
also computed at an aggregate program point (object point), by 
generalizing over all objects that are observed at entry to and 
exit from public methods of a class, that are passed into or 
returned from methods of other classes, or that are stored in 
object fields [14]. 
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D.    Nonsensical 

 Some trace variables and derived variables may represent 
meaningless expressions; in such a circumstance, the value is 
said to be nonsensical. That variable appears in the ‘.dtrace’ 
file, but its value is marked as nonsensical. Some trace 
variables and derived variables may not have a value because 
the expression that computes it cannot be evaluated. Even if 
implication is not verified between two invariant sets after 
examining the preconditions, continue to check the implication 
involving postconditions. This is somewhat dangerous, in that 
if the implication does not hold between the preconditions, the 
invariant sets may be inconsistent, in which case reasoning 
about the postconditions is formally nonsensical. Examples 
include: x when x is uninitialized or deallocated, x.y when x is 
null (uninitialized or deallocated), a[i] when i is outside the 
bounds of a (uninitialized or deallocated, or a is null). 

V. BUSYBOX CONCEPT BEHIND OUR APPAROACH 

 
[1] implemented golden implementation driven debugging 
method on BusyBox —the de-facto standard for Embedded 
Linux devices. It provides many of the standard Linux 
utilities, but has a smaller code size (size of the executable) 
than the GNU Core Utilities, net-tools and procps. This paper 
employed debugging methods on BusyBox version 1.4.2 and 
1.16.0, to find the root causes of errors that have previously 
been reported in literature [6]. We are interested in ‘arp –Ainet 
’bug to demonstrate our approach. In standard Linux 
distribution arp is found in network utility which manages 
processor’s network neighbor cache. It can add or delete the 
entries to the cache, or display the cache’s current content. 
There is a bug in the BusyBox arp implementation: running 
arp with the command-line option -Ainet results in a 
segmentation fault. ‘arp –Ainet’ in command line argument 
executes well when run in GNU environment, but produces 
wrong output when run in BusyBox—1.4.2. At this point of 
view we can assume the source program (arp.c) of the above 
said bug-- arp in GNU environment to be old stable program P 
and the same of the BusyBox environment, to be change 
induced buggy implantation P’. As because the file arp.c is 
larger in size and complexity, so we have chosen the pseudo 
format of arp.c from [1] to implement our methodology in 
simpler way.  We have termed it P, whereas the code snippet 
that we have developed from P (changing a few line of code) 
is P’. Both the programs P and P’ act as the stable and buggy 
respectively. Fig. 4 and fig. 5 represents P and P’ respectively. 

VI. EXPERIMENT ON DAIKON 

 
Consider an execution of the two programs as cuArp A inet 
and bbArp A inet, where bbArp and cuArp are respectively 
the names of the executables (debug build) resulting out of P 
and P’. Evidently, the output of cuArp is as expected inet 
DFLT_HW, while the output of bbArp is inet NULL (since 
argv[3] is NULL) which is undesirable. 

 
     Fig. 4 Simplified fragment of ARP in Coreutils/Net-tools – stable version. 

 

 
  Fig. 5 Simplified fragment of ARP in BusyBox– buggy version. 

 
As an objective of investigating the incorrect value of 
hardware type, we set out to find the root cause as to why the 
variable hw is set to a NULL value at the end of the program 
execution [1]. 
 

A. Trace file generation 

We run kvasir-dtrace ./ cuArp A inet and kvasir-dtrace ./ 
bbArp A inet in command line and produce cuArp.dtrace and 
bbArp.dtrace files respectively. The .dtrace file lists both 
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variable declarations and values present in the given file.  The 
declaration (.decls) parts of both files are shown in fig. 6 and 7 
respectively.   
 

 
  Fig. 6 Declaration part of cuArp.dtrace file. 
 
 

 
 Fig. 7 Declaration part of  bbArp.dtrace file. 
 

B. Invariant detection 

We run java daikon.Daikon daikon-output / cuArp.dtrace and 
java daikon.Daikon daikon-output / bbArp.dtrace in command 
line, that in turn produce cuArp.inv.gz and bbArp.inv.gz 
repectively, containing the list of invariants in compressed 
format. Fig. 8 illustrates the invariants of the both files. The 
left portion of fig. 8 presents the invariants found in 
cuArp.inv.gz whereas other portion presents that of 
bbArp.inv.gz. 
 

 
Fig. 8 Invariants of cuArp.inv.gz (left) and bbArp.inv.gz (right). 
 

C. Invariant comparison 

Now we run java daikon.Daikon.diff.Diff cuArp.inv.gz 
bbArp.inv.gz  in command line to produce the difference 
between the invariants of the two files. The difference of 
invariants is demonstrated in fig. 9. 
 

 
  Fig. 9 Invariant difference between cuArp.inv.gz and  bbArp.inv.gz. 

VII. ANALYSIS 

 
If we look at fig. 9 closely we can find out sharp difference of 
invariants between the two codes presented above. The 
<..function():::ENTER> and <..function():::EXIT> segments 
point out the difference between the invariants (function() is 
arbitrarily assumed for the two functions – get_hwtype0 and 
main()) found in two .inv files. The inner portion of the 
ENTER and EXIT program shows the clear difference 
between the two programs. For example if we consider 
<name=”DFLT_HW” {1+}, null>, it can be seen that the left 
portion of the comma (,) e.g., name=DFLT_HW presents the 
value of the invariant—name (in P).Whereas the value of 
name is null in P’. All other differences occurred in the 
invariant—difference file are basically due to systematic 
configuration. It means the value of variable name is 
DFLT_HW before entering into get_hwtype() in P but 
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different in case of P’. The same happens after exiting 
get_hwtype(), returning DFLT_HW. This can be verified by 
the declaration part of bbArp.dtrace file (fig. 7), where the 
“ENTER” and “EXIT” program points of get_hwtype() 
contains nonsensical values. This tells that the change of code 
at get_hwtype() in P’ leads to the change of  value of variable 
name, hence the bug intrusion in P’.  
 
Though, the output or manifestation of the bug in P’ is at line 
number 20 (e.g., the output  inet NULL)  the root cause of the 
bug is present in get_hwtype() function, where the value of 
actual parameter passing to get_hwtype() is argv[3] contains 
NULL ( as we put -- ./bbArp A inet   in commandline). Hence 
it can be said that the bug is present at line number 14 in form 
of argv[3]. Fig. 10 illustrates the whole concept.  
 

 
 Fig. 10 Illustration of source level bug localization incorporating invariant 
analysis. 

VIII. CONCLUSION 

 
In this paper we propose a methodology for debugging errors 
in embedded program. Our methodology works on top of 
Daikon, an invariant analyzer. We have experimented with a 
published error in BusyBox in pseudo format and found 
promising results. Currently, we are investigating to develop 
software which will automatically detect the errors present in 

embedded program correlating the invariant differences after 
generating the invariants produced by Daikon. 

REFERENCES 
 

[1]  A. Banerjee, Abhik R. Choudhury, Johannes A. Harlie, Zhenkai  
Liang, Golden implementation driven software debugging, in 
FSE-18, 2010. 

[2]   Software bug. http://en.wikipedia.org/wiki/Software bug. 
[3]   Daikon. http://pag.csail.mit.edu/daikon/. 
[4]   A. Zeller. Yesterday my program worked, today it does not. Why? 

In ESEC-FSE, 1999. 
[5]  P. P. Ray, A. Banerjee, Debugging memory issues in embedded 

linux: a case study, In IEEE Tech sym, 2011. 
[6] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and 

automatic  generation of high-coverage tests for complex systems  
programs. In OSDI, 2009. 

[7]    Valgrind. http://valgrind.org/. 
[8]   Qi, A. Roychoudhury, Z. Liang, and K. Vaswani. DARWIN: An               

approach for debugging evolving programs. In ESEC-FSE, 2009. 
[9]   B. Korel and J. W. Laski. Dynamic program slicing. Information 

Processing Letters, 29(3):155163, 1988. 
[10] J. Clause and A. Orso. Penumbra: Automatically identifying      

failurerelevant inputs using dynamic tainting. In ISSTA, 2009. 
[11]  D. Qi, A. Roychoudhury, and Z. Liang. Test generation to expose 

changes in evolving programs. In ASE, 2010. 
[12]  R. Santelices, P. Chittimalli, T. Apiwattanapong, A. Orso, and M. 

Harrold. Test-suite augmentation for evolving software. In ASE, 
2008. 

[13] Kiriansky,V.,Bruening,D.,and Amarasinghe,S.Secure execution  
via program shepherding. In USENIX Security(Aug.2002). 

[14]  J. H. Perkins, M. D. Ernst, Efficient Incremental Algorithms for  
Dynamic Detection of Likely Invariants, In SIGSOFT’04/FSE12. 

[15]  S. Hangal, S. narayanan, N. Chandra, S. Chakravorty, IODINE: A 
Tool to Automatically Infer Dynamic Invariants for Hardware  
Designs. In DAC 2005.  

AUTHORS PROFILE 
 
Mr. Partha Pratim Ray received B.Tech from the West Bengal University of 
Technology, India, in 2008. He is currently a final year student of M.Tech in 
the same university. His specialization is the Embedded Systems. The Author 
is also the student member of IEEE. 
 
Dr. Ansuman Banerjee is an Assistant Professor at the Advanced Computing 
and Microelectronics Unit, Indian Statistical Institute Kolkata, India. He 
received his B.E. from Jadavpur University, and M.S. and Ph.D. degrees from 
the Indian Institute of Technology Kharagpur -- all in Computer Science. Prior 
to joining Indian Statistical Institute, he spent some time at the National 
University of Singapore as a research fellow and about three years at Interra 
Systems India Pvt. Ltd. 
 
Mr. Banibrata Bag received B.Tech from the Burdwan University, India, in 
2004. He mastered in VLSI and Microelctronics from the West Bengal 
university of Technology, India, in 2009. This author has more than four years 
experience as a software developer in PHP programming He is currently an 
Assistant Professor in department of ECE in Haldia Institute of Technology. 

Partha Pratim Ray et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 780-785

785




